快乐科研 幸福生活
您现在的位置: 首页» 人才队伍» 正高级专家» 谭志坚 

谭志坚 

作者:

浏览次数:

日期:2020-11-06

谭志坚,男,1985年9月出生,湖南安仁人,博士,中国农业科学院麻类研究所(南方经济作物研究中心)研究员,博士生导师,2013年6月毕业于中南大学获工学博士学位。现任国家现代农业产业技术体系麻纤维膜生产岗位科学家,中国农业科学院科技创新工程“可降解材料开发与利用”团队首席科学家。入选中国农业科学院农科英才“优秀青年”和“杰出青年”、湖南省“湖湘青年英才”、长沙市“杰出创新青年”。主要研究方向为可生物降解膜研发及其应用;食品和天然产物活性成分绿色分离等。先后主持国家麻类产业技术体系岗位科学家项目、湖南省自然科学基金青年A类项目(原杰青项目)、国家自然科学基金项目等项目20余项;

以第一作者(或通讯作者)在Nat. Commun.,Angew.Chem.Int.Ed.,Adv.Sci.,Food Chem.,Sep.Purif.Technol.,Chem.Eng.J.,J.Hazard.Mater.,J.Clean Prod.,J.Colloid Interf.Sci.,ACS Appl.Mater.Inter.,Carbohyd.Polym.,ACS Sustain.Chem.Eng.,Ind.Crop Prod.等期刊发表SCI论文90余篇;担任国际学术期刊eFood副主编。以第一完成人授权国家发明专利19项;以第一完成人获得湖南省自然科学奖三等奖,作为主要完成人获得黑龙江省科技进步二等奖、全国农牧渔业丰收奖二等奖等。

一、以一作或通讯作者身份发表的代表性论文:

    One stone, four birds: Deep eutectic solvents serve multiple functions in the development of flexible smart tag for monitoring the freshness of high-protein food. Chemical Engineering Journal. 2025, 509: 161368.

    A review of green solvents for the extraction and separation of bioactive ingredients from natural products. Food Chemistry 2025,478: 143703

    Poly(ionic liquid) glass with high stiffness and toughness facilitated by supramolecular interactions. Chemical Engineering Journal. 2025, 506: 160244

    Switchable deep eutectic solvents for the extraction of phlorizin and trilobatin from sweet tea (Lithocarpus litseifolius (Hance) Chun). Separation and Purification Technology. 2025, 356: 129898.

    Enhanced ammonia-sensitive intelligent films based on a metal-organic framework for accurate shrimp freshness monitoring. Food Chemistry 2025, 471: 142805

    Selective separation of tanshinone homologs by biocomposite membranes based on poly(ionic liquids) and natural fibers. International Journal of Biological Macromolecules 2025, 295: 139568

    Natural Cellulose Reinforced Multifunctional Eutectogels for Wearable Sensors and Epidermal Electrodes. Carbohydrate Polymers. 2025, 348: 122939.

    A salt/salt aqueous two-phase system based on pH-switchable deep eutectic solvent for the extraction and separation of mulberry polysaccharides. Food Chemistry, 2025, 462: 141024.

    Transformation of Ionic Liquids into Stimuli-Responsive Ionic Glass: A Supramolecular Approach. CCS Chemistry. 2025, https://doi.org/10.31635/ccschem.024.202404845

    Optically Transparent and Mechanically Tough Glass with Impact Resistance and Flame Retardance Enabled by Covalent/Supramolecular Interactions. Materials Horizons 2024, 11, 5732-5739

    Aqueous two-phase system based on pH-responsive polymeric deep eutectic solvent for efficient extraction of aromatic amino acids. Food Chemistry, 2024, 430: 137029

    Physically entangled multifunctional eutectogels for flexible sensors with mechanically robust. Journal of Materials Chemistry A 2024, 12, 20307–20316.

    Active Food Packaging Composite Films from Bast Fibers-Derived Cellulose Nanofbrils. ACS Sustainable Chemistry & Engineering 2024, 12, 9511-9521.

    CO2-responsive deep eutectic solvents for the enhanced extraction of hesperidin from Fertile orange peel. Food Chemistry, 2024, 432: 137255

    Bulk transparent supramolecular glass enabled by host–guest molecular recognition. Nature Communication. 2024, 15: 3929.

    Characterization and the mechanism underlying the cryoprotective activity of a peptide from large yellow croaker (Pseudosciaena crocea). Food Chemistry, 2024, 435: 137512

    Bulk and transparent supramolecular glass from evaporation-induced noncovalent polymerization of nucleosides. Materials Horizons 2023, 10, 5152–5160.

    Three-phase partitioning constructed by pH-responsive deep eutectic solvents and sugars for purification of radish (Raphanus sativus L.) peroxidase. Separation and Purification Technology. 2023, 322: 124353.

    Zwitterionic Eutectogel-Based Wearable Strain Sensor with Superior Stretchability, Self-Healing, Self-Adhesion, and Wide Temperature Tolerance. ACS Applied Materials & Interfaces. 2023, 15: 34055-34063.

    CO2-triggered switchable hydrophilicity solvent as a recyclable extractant for ultrasonic-assisted extraction of Polygonatum sibiricum polysaccharides. Food Chemistry, 2023, 402: 134301.

    Extraction and purification of grape seed polysaccharides using pH-switchable deep eutectic solvents-based three-phase partitioning. Food Chemistry, 2023, 412: 135557.

    Real-Time Monitoring of Supramolecular Adhesion at Extreme Temperatures. Chemical Engineering Journal. 2023, 451: 138674.

    Innovative three-phase partitioning based on deep-eutectic solvents and sugars (sugaring-out effect) for cucumber peroxidase purification. Microchemical Journal. 2023, 190: 108702

    Deep eutectic solvents-based three-phase partitioning for tomato peroxidase purification: A promising method for substituting t-butanol. Food Chemistry, 2022, 393: 133379.

    Effects of residual pectin composition and content on the properties of cellulose nanofibrils from ramie fibers. Carbohydrate Polymers. 2022. 298: 20112.

    Poly(Thioctic Acid): from Bottom-Up Self-Assembly to 3D Fused Deposition Modeling Printing. Advanced Science. 2022, 9: 2203630.

    Extraction and separation of flavonoids and iridoids from Eucommia ulmoides leaf using choline tryptophan ionic liquid-based aqueous biphasic systems. Industrial Crops and Products2022, 187, 115465.

    Recyclable aqueous two-phase system formed by two temperature-responsive polymers for the chiral resolution of mandelic acid enantiomers. Journal of Molecular Liquids. 2022, 352: 118738.

    Two birds with one stone: porous poly(ionic liquids) membrane with high efficiency for the separation of amino acids mixture and its antibacterial properties. Journal of Colloid and Interface Science. 2021, 584: 866–874.

    On-Site Supramolecular Adhesion to Wet and Soft Surfaces via Solvent Exchange. ACS Applied Materials & Interfaces. 2021. 13, 44, 53083–53090.

    Three-phase partitioning based on CO2-responsive deep eutectic solvents for the green and sustainable extraction of lipid from Nannochloropsis sp. Separation and Purification Technology.2021, 279: 119685.

    Enantioselective liquid-liquid extraction of tryptophan enantiomers by a recyclable aqueous biphasic system based on stimuli-responsive polymers. Journal of Chromatography A. 2021,1656: 462532.

    Light-coloured cellulose nanofibrils produced from raw sisal fibers without costly bleaching process.Industrial Crops and Products. 2021, 172: 114009.

    Direct pretreatment of raw ramie fibers using an acidic deep eutectic solvent to produce cellulose nanofibrils in high purity. Cellulose. 2021, 28:175–188.

    β-cyclodextrin-based poly(ionic liquids) membranes enable the efficient separation of the amino acids mixture. Journal of Industrial and Engineering Chemistry. 2021, 103: 322–328.

    Extraction and preliminary purification of polysaccharides from Camellia oleifera Abel. seed cake using a thermoseparating aqueous two-phase system based on EOPO copolymer and deep eutectic solvents. Food Chemistry. 2020, 313:126164.

    Deep eutectic supramolecular polymers: Bulk supramolecular materials. Angewandte Chemie International Edition. 2020, 59, 11871-11875.

    Temperature-responsive deep eutectic solvents as green and recyclable media for the efficient extraction of polysaccharides from Ganoderma lucidum. Journal of Cleaner Production. 2020, 274: 123047.

    Ionic liquids simultaneously used as accelerants, stabilizers and extractants for improving the cannabidiol extraction from industrial hemp. Industrial Crops and Products.2020, 155: 112796.

    Supramolecular adhesive materials from natural acids and sugars with tough and organic solvent-resistant adhesion. CCS Chemistry. 2020, 2, 1690–1700.

    Deep eutectic solvents used as adjuvants for improving the salting-out extraction of ursolic acid from Cynomorium songaricum Rupr. in aqueous two-phase system. Separation and Purification Technology. 2019, 209: 112–118.

    Biphasic recognition chiral extraction of threonine enantiomers in a two-phase system formed by hydrophobic and hydrophilic deep-eutectic solvents. Separation and Purification Technology. 2019, 215: 102–107.

    Choline chloride-based deep eutectic solvent systems as a pretreatment for nanofibrillation of ramie fibers. Cellulose.2019, 26(5): 3069–3082.

    Deep eutectic solvents used as the green media for the efficient extraction of caffeine from Chinese dark tea. Separation and Purification Technology. 2019, 227: 115723.

    Green extraction of cannabidiol from industrial hemp (Cannabis sativa L.) using deep eutectic solvents coupled with further enrichment and recovery by macroporous resin. Journal of Molecular Liquids, 2019:287:110957

    Assessment of the cytotoxicity of ionic liquids on Spodoptera frugiperda 9 (Sf-9) cell lines via in vitro assays. Journal of Hazardous Materials. 2018, 348:1-9

    Chiral separation of mandelic acid enantiomers using an aqueous two-phase system based on a thermo-sensitive polymer and dextran. Separation and Purification Technology. 2017, 172: 382–387

    Salting-out extraction of allicin from garlic (allium sativum L.) based on ethanol/ammonium sulfate in laboratory and pilot scale. Food Chemistry. 2017, 217: 91–97

    An effective method for the extraction and purification of chlorogenic acid from ramie (Boehmeria nivea L.) leaves using acidic ionic liquids. Industrial Crops and Products2016,89: 78–86.

    Extraction and purification of chlorogenic acid from ramie (Boehmeria nivea L. Gaud) leaf using an ethanol/salt aqueous two-phase system. Separation and Purification Technology, 2014, 132: 396–400

    Isolation and purification of aloe anthraquinones based on an ionic liquid/salt aqueous two-phase system. Separation and Purification Technology, 2012, 98(19): 150-157

    Simultaneous extraction and purification of aloe polysaccharides and proteins using ionic liquid based aqueous two-phase system coupled with dialysis membrane. Desalination, 286 (2012) 389–393

论文成果网址

Scopus Author ID: https://www.scopus.com/authid/detail.uri?authorId=42062386500

Researchgate:https://www.researchgate.net/profile/Zhijian_Tan

ORCID:http://orcid.org/0000-0002-3976-0117

二、授权发明专利(第一完成人)

1. 大麻二酚的萃取方法和分离方法(ZL201910966138.X)

2. 一种大麻二酚的制备方法、制得的大麻二酚及其用途(ZL201811448669.1)

3. 提取和纯化青藤碱的方法(ZL201611158434.X)

4. 一种从红豆杉中提取紫杉醇的方法(ZL201710102183.1)

5. 熊果酸的萃取方法和应用(ZL201810649898.3)

6. 一种低共熔溶剂、环保型胶黏剂及其制备方法(ZL202010112262.2)

7. 小分子粘合剂及其制备方法(ZL201911115506.6)

8. 油茶枯饼中的多糖提取物及其提取方法(ZL201911187894.9)

9. 一种萃取分离黄芩苷和黄芩素的方法(ZL 202011307500.1)

10. 微滤膜及其制备方法和应用(ZL201911043950.1)

11. 一种从海藻中萃取分离油脂的方法(ZL 202110903080.1)

12. 可同时耐高温和耐低温的粘合剂的制备方法(ZL 202011312658.8)

13. 一种温度响应型低共熔溶剂及提取枸杞多糖的方法(ZL202111130460.2)

14. 一种提取分离甘草苷和甘草酸的方法(ZL202110903344.3)

15. 一种提取黄精多糖的方法(ZL202210473427.8)

16. 一种分离大麻二酚和四氢大麻酚的方法(ZL202111128745.2)

17. 一种提取分离葡萄籽多糖的方法(ZL202210979424.1)

18. 一种分离纯化番茄中过氧化物酶的方法(ZL202210343259.0)

19. 一种分离京尼平苷酸和桃叶珊瑚苷的方法(ZL202210474778.0)

三、个人联系方式

邮箱地址:tanzhijian@caas.cn;412485767@qq.com。联系电话:0731-88998517

所属类别: 科研动态

该资讯的关键词为: